Skip to contents

Subset a Binary Matrix By Genes Available on Specified Panel

Usage

subset_by_panel(gene_binary, panel_id = NULL, other_vars = NULL)

Arguments

gene_binary

A data frame with a row for each sample and column for each alteration. Data frame must have a sample_id column and columns for each alteration with values of 0, 1 or NA.

panel_id

A character string or vector of the specified panel to subset the genes (see gnomeR::gene_panels for available panels)

other_vars

One or more column names (quoted or unquoted) in data to be retained in resulting data frame. Default is NULL.

Value

a data frame with a sample_id column and columns for alterations on genes that were sequenced on the specified panel.

Author

Jessica Lavery

Examples

samples <- unique(gnomeR::mutations$sampleId)
gene_binary <- create_gene_binary(
  samples = samples, mutation = mutations, cna = cna,
  mut_type = "somatic_only",
  include_silent = FALSE,
  specify_panel = "impact"
)
subset_by_panel(gene_binary = gene_binary, panel_id = "IMPACT468")
#>  There are 244 genes on the IMPACT468 panel that are not altered for any patients; columns for those genes are not included in the resulting data frame. To see the names of the genes that are not mutated for any patients in the sample, To view and compare genes in each panel, see `unnest(gnomeR::gene_panels, cols = c('genes_in_panel'))`
#> # A tibble: 200 × 228
#>    sample_id      AKT1  AKT3   ALK ANKRD11   APC    AR  ARAF ARID1A ARID1B ARID2
#>    <chr>         <dbl> <dbl> <dbl>   <dbl> <dbl> <dbl> <dbl>  <dbl>  <dbl> <dbl>
#>  1 P-0001128-T0…     1     0     0      NA     0     0     0      0      0     0
#>  2 P-0001859-T0…     0     0     0      NA     1     0     0      0      0     0
#>  3 P-0001895-T0…     0     0     1      NA     0     0     0      0      0     0
#>  4 P-0001845-T0…     1     0     0      NA     0     0     0      0      0     0
#>  5 P-0001768-T0…     0     0     1      NA     0     0     0      0      0     0
#>  6 P-0002984-T0…     0     0     1      NA     0     0     0      0      0     0
#>  7 P-0000964-T0…     0     0     0      NA     1     0     0      0      0     0
#>  8 P-0000964-T0…     0     0     0      NA     1     0     0      0      0     0
#>  9 P-0000610-T0…     0     0     0      NA     1     0     0      0      0     0
#> 10 P-0001247-T0…     0     0     0      NA     1     0     0      0      0     0
#> # ℹ 190 more rows
#> # ℹ 217 more variables: ARID5B <dbl>, ASXL1 <dbl>, ASXL2 <dbl>, ATM <dbl>,
#> #   ATR <dbl>, ATRX <dbl>, AURKB <dbl>, AXIN1 <dbl>, AXIN2 <dbl>, BAP1 <dbl>,
#> #   BARD1 <dbl>, BCL6 <dbl>, BCOR <dbl>, BLM <dbl>, BMPR1A <dbl>, BRAF <dbl>,
#> #   BRCA1 <dbl>, BRCA2 <dbl>, BRIP1 <dbl>, CARD11 <dbl>, CBL <dbl>,
#> #   CCND1 <dbl>, CD276 <dbl>, CD79B <dbl>, CDC73 <dbl>, CDH1 <dbl>,
#> #   CDK12 <dbl>, CDK4 <dbl>, CDK8 <dbl>, CDKN1A <dbl>, CDKN2C <dbl>, …

p_genes <- tidyr::unnest(gnomeR::gene_panels, cols = c("genes_in_panel"))
p_genes <- p_genes[p_genes$gene_panel == 'IMPACT300', ]
setdiff(p_genes$genes_in_panel, names(gene_binary))
#>   [1] "ABL1"     "ABL2"     "AKT2"     "ALOX12B"  "AMER1"    "ARHGAP26"
#>   [7] "AURKA"    "BCL2L1"   "BCL2L11"  "BIRC2"    "BUB1B"    "CBLB"    
#>  [13] "CBLC"     "CCND2"    "CCND3"    "CCNE1"    "CDC42EP2" "CDH11"   
#>  [19] "CDK6"     "CDKN2A"   "CDKN2B"   "CEBPA"    "CHEK1"    "CRKL"    
#>  [25] "CRLF2"    "CYLD"     "DIS3"     "DNMT3A"   "DNMT3B"   "E2F3"    
#>  [31] "EIF4EBP1" "EPHA10"   "EPHA2"    "EPHA4"    "EPHA6"    "EPHA7"   
#>  [37] "EPHA8"    "EPHB2"    "EPHB3"    "EPHB4"    "EPHB6"    "EZH2"    
#>  [43] "FAS"      "FAT4"     "FBXO11"   "FBXW7"    "FGFR3"    "FKBP1A"  
#>  [49] "FLT4"     "GATA1"    "GATA2"    "GLI3"     "GNA11"    "GNAS"    
#>  [55] "GOLPH3"   "GRM3"     "GSK3B"    "HDAC2"    "HIF1A"    "HLA-A"   
#>  [61] "HMGA2"    "HSP90AA1" "IGFBP7"   "IKBKE"    "IL7R"     "INSR"    
#>  [67] "IRF4"     "JUN"      "KCNJ5"    "KDR"      "KEAP1"    "KIT"     
#>  [73] "KLF6"     "LDHA"     "LGR6"     "MAGI2"    "MAP2K4"   "MAP3K1"  
#>  [79] "MAP3K8"   "MCL1"     "MLST8"    "MPL"      "MYB"      "MYCL"    
#>  [85] "MYCN"     "MYD88"    "NCOA2"    "NF2"      "NFE2L2"   "NFKB1"   
#>  [91] "NFKB2"    "NOTCH2"   "NRAS"     "PAK5"     "PBRM1"    "PHOX2B"  
#>  [97] "PKM"      "PNRC1"    "POLE"     "PPP6C"    "PREX2"    "PRKAA2"  
#> [103] "PRKAR1A"  "PRKCI"    "PRKN"     "PTPN11"   "RAC1"     "RAD50"   
#> [109] "RAF1"     "REL"      "RICTOR"   "ROR2"     "RPS6KB1"  "SMARCA4" 
#> [115] "SMARCB1"  "SOCS1"    "SRC"      "SRSF2"    "SUFU"     "SYK"     
#> [121] "TBK1"     "TEK"      "TERT"     "TNFRSF14" "TSC1"     "TSHR"    
#> [127] "WAS"      "WNK1"     "YES1"     "ZRSR2"