AI Tools for R
Tools and services that integrate with R for enhanced AI capabilities
Overview
This page highlights external AI tools and services that can be leveraged in R workflows.
Featured Tools
OpenAI API
Access powerful language models like GPT-4 directly from R.
# Using httr2 package to call OpenAI API
library(httr2)
library(jsonlite)
<- function(prompt, model = "gpt-4") {
openai_completion <- request("https://api.openai.com/v1/chat/completions") %>%
request req_headers(
"Content-Type" = "application/json",
"Authorization" = paste("Bearer", Sys.getenv("OPENAI_API_KEY"))
%>%
) req_body_json(list(
model = model,
messages = list(list(role = "user", content = prompt)),
temperature = 0.7
%>%
)) req_perform()
<- resp_body_json(request)
response return(response$choices[[1]]$message$content)
}
HuggingFace Transformers
Use state-of-the-art NLP models in your R workflow.
# Using reticulate to access HuggingFace in R
library(reticulate)
# Initialize transformers
<- import("transformers")
transformers
# Load a pre-trained model
<- "distilbert-base-uncased-finetuned-sst-2-english"
model_name <- transformers$AutoTokenizer$from_pretrained(model_name)
tokenizer <- transformers$AutoModelForSequenceClassification$from_pretrained(model_name)
model
# Function to analyze sentiment
<- function(text) {
analyze_sentiment <- tokenizer(text, return_tensors = "pt")
inputs <- model(**inputs)
outputs <- outputs$logits$argmax(dim = 2L)
predictions return(as.integer(predictions[1]) - 1) # 0 for negative, 1 for positive
}
RStudio AI Assistant
RStudio’s integrated AI assistance provides code suggestions, explanations, and more.
Coming Soon
- Integration tutorials
- Performance benchmarks
- Cost considerations