AI Tools for R
Tools and services that integrate with R for enhanced AI capabilities
Overview
This page highlights external AI tools and services that can be leveraged in R workflows.
Featured Tools
OpenAI API
Access powerful language models like GPT-4 directly from R.
# Using httr2 package to call OpenAI API
library(httr2)
library(jsonlite)
openai_completion <- function(prompt, model = "gpt-4") {
request <- request("https://api.openai.com/v1/chat/completions") %>%
req_headers(
"Content-Type" = "application/json",
"Authorization" = paste("Bearer", Sys.getenv("OPENAI_API_KEY"))
) %>%
req_body_json(list(
model = model,
messages = list(list(role = "user", content = prompt)),
temperature = 0.7
)) %>%
req_perform()
response <- resp_body_json(request)
return(response$choices[[1]]$message$content)
}HuggingFace Transformers
Use state-of-the-art NLP models in your R workflow.
# Using reticulate to access HuggingFace in R
library(reticulate)
# Initialize transformers
transformers <- import("transformers")
# Load a pre-trained model
model_name <- "distilbert-base-uncased-finetuned-sst-2-english"
tokenizer <- transformers$AutoTokenizer$from_pretrained(model_name)
model <- transformers$AutoModelForSequenceClassification$from_pretrained(model_name)
# Function to analyze sentiment
analyze_sentiment <- function(text) {
inputs <- tokenizer(text, return_tensors = "pt")
outputs <- model(**inputs)
predictions <- outputs$logits$argmax(dim = 2L)
return(as.integer(predictions[1]) - 1) # 0 for negative, 1 for positive
}RStudio AI Assistant
RStudio’s integrated AI assistance provides code suggestions, explanations, and more.
Coming Soon
- Integration tutorials
- Performance benchmarks
- Cost considerations