Broom methods for tidycrr objects
a tidycrr object
Logical indicating whether or not to exponentiate the
coefficient estimates. Defaults to FALSE
.
Logical indicating whether or not to include a confidence
interval in the tidied output. Defaults to FALSE
.
Level of the confidence interval. Default matches that in
crr(conf.level=)
(typically, 0.95)
not used
Numeric vector of times to obtain risk estimates at
Numeric vector of quantiles to obtain estimates at
A base::data.frame()
or tibble::tibble()
containing all
the original predictors used to create x. Defaults to NULL
.
a tibble
Other crr() functions:
crr()
,
predict.tidycrr()
crr <- crr(Surv(ttdeath, death_cr) ~ age + grade, trial)
#> 11 cases omitted due to missing values
tidy(crr)
#> # A tibble: 3 × 5
#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 age 0.00588 0.00987 0.596 0.55
#> 2 gradeII 0.0601 0.361 0.166 0.87
#> 3 gradeIII 0.431 0.324 1.33 0.18
glance(crr)
#> # A tibble: 1 × 5
#> converged logLik nobs df statistic
#> <lgl> <dbl> <int> <dbl> <dbl>
#> 1 TRUE -264. 189 3 2.34
augment(crr, times = 12)
#> # A tibble: 200 × 10
#> trt age marker stage grade response death death_cr ttdeath `time 12`
#> <chr> <dbl> <dbl> <fct> <fct> <int> <int> <fct> <dbl> <dbl>
#> 1 Drug A 23 0.16 T1 II 0 0 censor 24 0.0368
#> 2 Drug B 9 1.11 T2 I 1 0 censor 24 0.0320
#> 3 Drug A 31 0.277 T1 II 0 0 censor 24 0.0386
#> 4 Drug A NA 2.07 T3 III 1 1 death other… 17.6 NA
#> 5 Drug A 51 2.77 T4 III 1 1 death other… 16.4 0.0621
#> 6 Drug B 39 0.613 T4 I 0 1 death from … 15.6 0.0381
#> 7 Drug A 37 0.354 T1 II 0 0 censor 24 0.0399
#> 8 Drug A 32 1.74 T1 I 0 1 death other… 18.4 0.0366
#> 9 Drug A 31 0.144 T1 II 0 0 censor 24 0.0386
#> 10 Drug B 34 0.205 T3 I 0 1 death from … 10.5 0.0370
#> # ℹ 190 more rows