Assess a model's calibration via a calibration plot.
ggcalibration(
  data,
  y,
  x,
  n.groups = 10,
  conf.level = 0.95,
  ci.method = c("exact", "ac", "asymptotic", "wilson", "prop.test", "bayes", "logit",
    "cloglog", "probit"),
  geom_smooth.args = list(method = "loess", se = FALSE, formula = y ~ x, color = "black"),
  geom_errorbar.args = list(width = 0),
  geom_point.args = list(),
  geom_function.args = list(colour = "gray", linetype = "dashed")
)a data frame
variable name of the outcome coded as 0/1
variable name of the risk predictions
number of groups
level of confidence to be used in the confidence interval
method to use to construct the interval.
See binom::binom.confint() for details
named list of arguments that will be passed
to ggplot2::geom_smooth(). Default is
list(method = "loess", se = FALSE, formula = y ~ x, color = "black")
named list of arguments that will be passed
to ggplot2::geom_errorbar(). Default is list(width = 0)
named list of arguments that will be passed
to ggplot2::geom_point(). Default is list()
named list of arguments that will be passed
to ggplot2::geom_function() and is the function that adds the 45 degree
guideline. Default is list(colour = "gray", linetype = "dashed")
ggplot